OBJECTIVE MATHEMATICS

CHAPTER-15 : PROBABILITY

UNIT TEST-1

1. Consider three sets $E_{1}=\{1,2,3\}, F_{1}=\{1,3,4\}$ and $G_{1}=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set E_{1}, and let S_{1} denote the set of these chosen elements. Let $E_{2}=E_{1}-S_{1}$ and $F_{2}=F_{1} \cup S_{1}$. Now two elements are chosen at random, without replacement, from the set F_{2} and let S_{2} denote the set of these chosen elements.

Let $G_{2}=G_{1} \cup S_{2}$. Finally, two elements are chosen at random, without replacement, from the set G_{2} and let S_{3} denote the set of these chosen elements. Let $E_{3}=E_{2} \cup S_{3}$. Given that $E_{1}=E_{3}$, let p be the conditional probability of the event $S_{1}=\{1,2\}$. Then the value of p is
(a) $\frac{1}{5}$
(b) $\frac{3}{5}$
(c) $\frac{1}{2}$
(d) $\frac{2}{5}$
2. A number is chosen at random from the set $\{1,2$, $3, \ldots, 2000\}$. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7 . Then the value of $500 p$ is
3. Three numbers are chosen at random, one after another with replacement, from the set $S=\{1,2,3, \ldots, 100\}$. Let p_{1} be the probability that the maximum of chosen numbers is at least 81 and p_{2} be the probability that the minimum of chosen numbers is at most 40 . The value of $\frac{625}{4} p_{1}$ is.

Hints and Solutions

1. (214) $E_{1}=$ Event that it is a multiple of 3

$$
E_{2}=\text { Event that it is a multiple of } 3
$$

$\therefore \quad P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{1} \cap E_{2}\right)$
$=\frac{666+285-95}{2000}=\frac{856}{2000}$
$\therefore \quad \mathrm{GE}=500 \times \frac{856}{2000}=\frac{856}{4}=214$
2. (a) The situation is represented as:

Required probability
$=\frac{\frac{1}{3} \times \frac{1}{2} \times \frac{1}{10}}{\frac{1}{3} \times \frac{1}{2} \times \frac{1}{10}+\frac{1}{3} \times\left[\frac{1}{2} \times 1 \times \frac{1}{10}+\frac{{ }^{3} C_{2}}{{ }^{4} C_{2}} \times \frac{1}{6}\right]+\frac{1}{3} \times\left[\frac{2}{3} \times \frac{1}{10}\right]}$

$$
=\frac{\frac{1}{20}}{\frac{1}{20}+\frac{1}{20}+\frac{1}{12}+\frac{1}{15}}=\frac{1}{20} \times \frac{60}{(6+5+4)}=\frac{1}{5}
$$

